Application

OThe applications above are just examples. Contact RIKEN KEIKI for the other measuring targets and measuring ranges.

★ Distributed by:

RIKEN KEIKI Co., Ltd.

2-7-6 Azusawa, Itabashi-ku, Tokyo 174-8744, Japan Phone : +81-3-3966-1113 Telefax : +81-3-3558-9110 E-mail : intdept@rikenkeiki.co.jp Web : http://www.rikenkeiki.co.jp

Explosion-Proof Calorimeter

Model OHC-800 Calorific value Specific gravity Wobbe Index Methane number

"Opt-Sonic calculation" is applied by using Optical sensor and Sonic sensor.

"Opt-Sonic calculation" is based on the calculation combining 2 measuring results obtained by the 2 sensors. This can minimize the interference effects on the reading caused by interference gases, and enable the high-accuracy and reliable measurement. * Opt-Sonic is a term coined by RIKEN KEIKI to describe Optical and Sonic sensors

Easy to switch the display among "Calorific value", "Density" and "WOBBE index".

Displayed unit is easily switched by pressing the button. Laborious calculation is not needed.

Fulfilling self-diagnosis function and running cost

Self-diagnosis function including fault diagnostic prevents the calorimeter from being incapable of measuring the gas. Few consumables are needed and this saves running cost.

Body structure that can be installed into all types of location

Structure is robust with Explosion-Proof (Exd IIB+H2 T4) and high ingress protection level (IP66/IP67) Both 100VAC~240VAC and 24VDC power supply can be supplied.

Printed in Japan C4E-0220-160100

Features

- Unique measuring principle "Opt-Sonic calculation" is applied. This can minimize the interference effects caused by interferencegases, and a high-accuracy measuring result can be obtained.
- Fast response time T90 reaction within 5 seconds. .
- High repeatability +/- 0.02MJ/m
- Wide operation temperature $-20 \sim +57$ degree C
- Explosion-Proof structure even for Hydrogen Exd IIB+H2 T4
- High ingress protection level IP66 / IP67
- Remarkable temperature characteristic Below 0.10MJ/m² fluctuation for the temperature change in a day (< 20 degree C)
- Easy to switch the display among "Calorific value", "Density" and "WOBBE index" just by the button operation.

"Opt-Sonic calculation" is applied by using Optical sensor and Sonic sensor. The interference effects on the reading caused by interference gases such as N₂, O₂, CO₂ etc. can be minimized.

Optical sensor and Sonic sensor are individually used for a calorimeter, but both sensors have the interference effects on the reading caused by interference gases such as N₂, O₂, CO₂ etc.

"Opt-Sonic calculation" using measuring results of the Optical sensor and Sonic sensor can minimize the interference effects caused by interference gases, and realize a high-accuracy measurement.

 $CH 4 + N_2$

 $CH_{4}+CO_{2}$

Model	OHC-800
Measuring principle	Opt-Sonic calculation through measurement of refractive index and sound speed
Measuring gas	CH4 basis Paraffinic Hydrocarbon gases as represented by Natural Gas *1
Measuring targets	Calorific value (Density / WOBBE index selectable)
Measuring range *2	Calorific value : 25.00~50.00 MJ/rn (Gross, 0 degree C, 101.325kPa converted) Density : 0.500~1.500 MJ/rn (Specific gravity converted)
Measuring method	Constant-flow-rate gas introduction using external sampling devices
Display	Full-dot LCD (with backlight), 3 color LED lamp
External Output	4–20 mA DC (isolated, source current type) maximum load resistance of 300 Ω / RS-485 communication
FAILURE alarm	Low flow, Sensor unit abnormality, Low light amount
FAILURE alarm display	Lamp (red) / Content indication on LCD
FAILURE alarm contact *3	No-voltage contact 1a or 1b De-energize (Energize when alarming) or Energize (De-energize when alarming) Contact capacity of 2 A, 30 VDC (resistance load)
Self-diagnostic function	FUNCTION CHECK (warm-up or maintenance mode), MAINTENANCE REQUIRED, OUT OF SPECIFICATION
Self-diagnostic display	FUNCTION CHECK, OUT OF SPECIFICATION : Lamp (orange) / Content indication on LCD MAINTENANCE REQUIRED : Lamp (green) / Content indication on LCD
Self-diagnostic contact	FUNCTION CHECK, OUT OF SPECIFICATION : No-voltage contact 1a or 1b De-energize (Energize when alarming) or Energize (De-energize when alarming) Contact capacity of 2 A, 30 VDC (resistance load) MAINTENANCE REQUIRED : SSR contact, contact capacity of 20 W, 240 VAC (resistance load)
Power supply	$100-240$ VAC $\pm10\%$ 50/60 Hz, max. 18 VA or 24 VDC $\pm10\%$ max. 5 W (The setting can be changed to either the AC or DC)
Ingress Protection level	Equivalent to IP66 and IP67
Operation temperature	-20~+57 degree C(TIIS)/-20~+60 degree C(ATEX/IECEx)
Operation humidity	95%RH or less (no condensing)
Outer dimensions / Weight	Approx. 286 (W) x 453 (H) x 150 (D) mm / Approx. 23 kg
Explosion-Proof structure	Flame-proof enclosures (Explosion-proof class: Exd II B+H2 T4 <tiis>/ II 2GExd II B+H2T4 <atex iecex="">)</atex></tiis>

*1 Total concentration of interference gases such as N2, O2, CO2, CO etc. contained in a target gas is estimated as less than 20% *2 Contact RIKEN KEIKI for the other measuring ranges

*3 Contact setting is adjustable

OHC-800 is designed to have it incorporated in the specific sampling device RS-400 series. The model of sampling device is selected in accordance with the location where the calorimeter is installed and gas sampling point pressure condition etc.

